Discriminative Classifiers with Generative Kernels for Noise Robust Speech Recognition
نویسندگان
چکیده
Discriminative classifiers are a popular approach to solving classification problems. However one of the problems with these approaches, in particular kernel based classifiers such as Support Vector Machines (SVMs), is that they are hard to adapt to mismatches between the training and test data. This paper describes a scheme for overcoming this problem for speech recognition in noise by adapting the kernel rather than the SVM decision boundary. Generative kernels, defined using generative models, are one type of kernel that allows SVMs to handle sequence data. By compensating the parameters of the generative models for each noise condition noise-specific generative kernels can be obtained. These can be used to train a noise-independent SVM on a range of noise conditions, which can then be used with a test-set noise kernel for classification. The noise-specific kernels used in this paper are based on Vector Taylor Series (VTS) model-based compensation. VTS allows all the model parameters to be compensated and the background noise to be estimated in a maximum likelihood fashion. A brief discussion of VTS and the optimisation of the mismatch function representing the impact of noise on the clean speech, is also included. Experiments using these VTS-based test-set noise kernels were run on the AURORA 2 continuous digit task. The proposed SVM rescoring scheme yields large gains in performance over the VTS compensated models.
منابع مشابه
Discriminative classifiers with adaptive kernels for noise robust speech recognition
Discriminative classifiers are a popular approach to solving classification problems. However one of the problems with these approaches, in particular kernel based classifiers such as Support Vector Machines (SVMs), is that they are hard to adapt to mismatches between the training and test data. This paper describes a scheme for overcoming this problem for speech recognition in noise by adaptin...
متن کاملDiscriminative classifiers with generative kernels for noise robust ASR
Discriminative classifiers are a popular approach to solving classification problems. However one of the problems with these approaches, in particular kernel based classifiers such as Support Vector Machines (SVMs), is that they are hard to adapt to mismatches between the training and test data. This paper describes a scheme for overcoming this problem for speech recognition in noise. Generativ...
متن کاملLearning Discriminative Fisher Kernels
Fisher kernels provide a commonly used vectorial representation of structured objects. The paper presents a technique that exploits label information to improve the object representation of Fisher kernels by employing ideas from metric learning. In particular, the new technique trains a generative model in such a way that the distance between the log-likelihood gradients induced by two objects ...
متن کاملGenerative Kernels and Score-Spaces for Classication of Speech: Progress Report ii
January is is the second progress report for Project /// (Generative Kernels and Score Spaces for Classiication of Speech) within the Global Uncertainties Programme. is project combines the current generative models developed in the speech community with discriminative classiiers. An important aspect of the approach is that the generative models are used to deene a score-space that can be used ...
متن کاملGenerative Kernels and Score-Spaces for Classication of Speech: Progress Report
January is is the rst progress report for Project /// (Generative Kernels and Score Spaces for Classiication of Speech) within the Global Uncertainties Programme. is project combines the current generative models developed in the speech community with discriminative classiiers. An important aspect of the approach is that the generative models are used to deene a score-space that can be used as ...
متن کامل